
V2.2

TBS09S

MODBUS Master to SDI 12 Slave Converter

© 2025 Tekbox Digital Solutions

Factory 4, F4, Lot I-3B-1, Saigon HiTech Park, Q.9 | Ho Chi Minh City | Tel +84 287 1099865| office@tekbox.com| www.tekbox.com

The TBS09S is a converter to connect SDI-12 sensors to a MODBUS master. It can control multiple
SDI12 sensors in parallel by individually addressing the connected SDI-12 sensors.

Features

▪ MODBUS Master to SDI 12 Slave
Converter

▪ Multiple SDI-12 sensors can be connected

▪ SDI-12 Standard V1.4 (reduced
commands set)

▪ MODBUS RTU, 19200 baud

▪ Up to 32 SDI-12 commands can be
programmed

▪ 5 - 16V supply voltage

▪ 12mA current consumption when active

▪ Available in DIN rail and FIBOX housing.

Target Applications
▪ SDI-12 sensor networks with MODBUS

controller

TBS09S MODBUS Master to SDI 12 Slave Converter

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 2

Contents

1 INTRODUCTION 3

2 PRODUCT SPECIFICATION 3

3 CALIBRATION AND SETTINGS 4

4 CONNECTIONS 5

5 MODBUS CONFIGURATION 6

5.1 HW CONFIGURATION 6
5.2 RS485 CONFIGURATION 6

6 SENDING SDI-12 COMMANDS THROUGH TBS09S 7

6.1 LIMITATIONS 7
6.2 SUPPORTED SDI-12 COMMANDS 7
6.3 MODBUS TO SDI-12 COMMUNICATION PRINCIPLES 8

6.3.1 TBS09S MODBUS registers mapping 9
6.3.2 SDI-12 commands configuration 10
6.3.3 SDI-12 delay and parameters number encoding 16
6.3.4 Command status register 16
6.3.5 SDI-12 commands activation 17
6.3.6 SDI-12 measurement values 17
6.3.7 TBS09S configuration and measurement flowchart 18

6.4 MISCELLANEOUS COMMANDS 19
6.4.1 Overview 19
6.4.2 Change MODBUS address 20
6.4.3 Get FW version 20
6.4.4 Reset to default settings 20

7 TBS09S CONFIGURATION AND COMMUNICATION EXAMPLES 21

7.1 USING A PLC 21
7.1.1 Change TBS09S MODBUS address 21
7.1.2 Change SDI-12 sensor address 22
7.1.3 Configure SDI-12 command 23
7.1.4 Read back configured SDI-12 command 23
7.1.5 Read SDI-12 measurement time and number of parameters 24
7.1.6 Trigger SDI-12 measurement 25
7.1.7 Check SDI-12 command status register 25
7.1.8 Retrieve SDI-12 measurement values 26

7.2 AT MODBUS ADU LEVEL 26

8 COMMUNICATION PROTOCOLS 27

8.1 SDI-12 27
8.2 MODBUS 27

9 MECHANICAL INFORMATION 27

10 ENVIRONMENTAL SPECIFICATION 28

11 ORDERING INFORMATION 28

12 HISTORY 28

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 3

1 Introduction

The TBS09S is a converter to connect one or multiple SDI-12 sensors to a MODBUS device such as a data
logger or telemetry unit. The converter is inserted in between the data logger or RTU with MODBUS interface
and the sensor(s) with SDI-12 interface. The designation MODBUS Master to SDI-12 Slave is ambiguous.
Looking purely at the converter, the device got a MODBUS slave interface on one side and a SDI-12 master
output at the other side. However, looking at its application, the device is a converter between a MODBUS
master (data logger, RTU, etc.) and a SDI-12 slave (sensor with SDI-12 interface).

The following diagrams describe a typical use of TBS09S module that bridges a MODBUS telemetry unit with a
SDI-12 sensor and highlight how the internal TBS09S MODBUS/SDI-12 layers interact with them.

TBS09S application

2 Product specification

• Application: converter used to interface MODBUS master devices (e.g., RTU) with SDI-12 slave devices
(e.g., sensors)

o The converter embeds MODBUS slave and SDI-12 master modules

• SDI-12 compatibility:

o Version: v1.4

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 4

o SDI-12 commands not supported: aV!, extended commands, high volume commands, metadata
commands.

o Data command supports up to 32 measurements maximum

• MODBUS compatibility:

o Protocol: MODBUS RTU

▪ Required supported function codes by MODBUS master: 0x01, 0x03, 0x04, 0x05, 0x06

o RS485 configuration:

▪ Baud rate: 19200

▪ Data length: 8 bits

▪ Parity: none

▪ Stop bits: 1

o Half or full duplex (configurable)

o 120 Ω termination (configurable)

• Supply voltage: 5 – 16 V

• Power consumption

o Current drawn by TBS09S without any SDI-12 measurements: 12 mA

o Warm-up time: 3s

• Form factor:

o DIN rail

o FIBOX (IP67 housing suitable for outdoor use)

3 Calibration and settings

TBS09S doesn’t require any calibration.

It comes factory-configured to operate by default in half duplex with termination.

This configuration can be changed by the user by setting related jumpers J3/J4/J5 after lifting the housing:

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 5

Communication mode:

Configuration J3 Default configuration

Half Duplex  

Full Duplex 

MODBUS termination:

Configuration J4 – J5 Default configuration

120 Ω termination  

No termination 

4 Connections
TBS09S provides one 4 slots connector (SDI-12) and one 6 slots connector (RS485):

SDI-12 terminal assignment, from top to bottom:

Slot name Description Comment

Shield Cable shield Connect to sensor’s
cable shield

Ground Ground Connect to ground

Data SDI-12 data line Connect to SDI-12
sensor data line

Power TBS09S supply voltage
input

Connect to +12V external
power supply

RS485 terminal assignment, from top to bottom:

Slot name Description Comment

T+ TXD+ output Connect to MODBUS
master RXD+

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 6

T- TXD- output Connect to MODBUS
master RXD-

R+ RXD+ input Connect to MODBUS
master TXD+ (full
duplex operation only –
must be left
unconnected in half
duplex)

R- RXD- input Connect to MODBUS
master TXD- (full duplex
operation only – must
be left unconnected in
half duplex)

G Ground Connect to ground

P SDI-12 sensor supply
voltage output (+12V,
connected to the
converter supply line
through a high side FET
switch)

Connect to SDI-12
sensor power line.

5 MODBUS configuration

5.1 HW configuration

MODBUS RTU communication over RS485 can be set in either half or full duplex and 120Ω termination can be
added as well.

It is advised to use 120Ω termination in case many MODBUS slave devices including TBS09S are sharing the
same bus.

5.2 RS485 configuration

RS485 communication parameters are set as follows:

Feature Default setting

Baud rate 19200 bauds

Data bits 8

Parity None

Stop bits 1

TBS09S slave address 1

These settings can’t be changed except for TBS09S MODBUS address.

For other RS485 configurations, please send a request to Tekbox Customer Support Team.

mailto:sales@tekbox.com?subject=TBS09S%20/%20Custom%20RS485%20settings

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 7

6 Sending SDI-12 commands through TBS09S

6.1 Limitations

Due to the fact SDI-12 and MODBUS RTU are totally different communication stacks and also due to memory
constraints on the module, TBS09S does not fully support SDI-12 protocol as described in v1.4 specification.

Limitations vs SDI-12 v1.4 specification:

• Extended SDI-12 commands are not supported

• Verification command V! is not supported

• Maximum of 32 measurement values vs 99 in SDI-12 standard

• SDI-12 measurement time up to 255s vs 999s in SDI-12 standard

• aCx! commands are supported nevertheless they’re not handled as concurrent measurement

• aMx! service request can’t be signaled to the MODBUS master

• Data commands are automatically handled by TBS09S so the MODBUS master only needs to retrieve
the measurements after sending the measurement command.

• The limitations and communication principles between the MODBUS master and SDI-12 sensors is
discussed in detail in a dedicated chapter.

6.2 Supported SDI-12 commands

Supported SDI-12 address range is aligned with SDI-12 v1.4 specification:

• 0 – 9

• A – Z

• a – z

TBS09S embeds a full SDI-12 v1.4 stack, nevertheless only most of SDI-12 v1.3 commands are supported for
MODBUS to SDI-12 conversion with some restrictions. Further support might be extended in a future HW&FW
upgrade.

The following table lists SDI-12 v1.4 commands and their support by TBS09S and highlights any limitations or
restrictions vs SDI-12 standard:

SDI-12 command Description TBS09S support Comments

?! Address Query Yes -

a! Acknowledge Active Yes -

aI! Send Identification Yes -

aAb! Change Address Yes -

aM! Start Measurement Yes
Although TBS09S handles
the service request, this is
transparent for the
MODBUS master as it
can’t be notified about it.
Only polling the status
register for the ready flag
could help knowing earlier

aMC!
Start Measurement
and Request CRC

Yes

aM1! to aM9!
Additional

Measurements
Yes

aMC1! to aMC9!
Additional

Measurements and
Request CRC

Yes

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 8

that the measurements
are available.

Measurement time limited
to 255s.

aC!
Start Concurrent

Measurement
Yes

As TBS09S must receive
new SDI-12 measurement
commands over MODBUS
only once the
measurement values have
been retrieved, true
concurrent measurements
are not possible.

C! and CC! are merely like
executing M!/MC!.

Measurement time limited
to 255s.

aCC!
Start Concurrent

Measurement and
Request CRC

Yes

aC1! to aC9!
Additional Concurrent

Measurement
Yes

aCC1! to aCC9!
Additional Concurrent

Measurement and
Request CRC

Yes

aR0! to aR9!
Continuous

Measurements
Yes -

aRC0! to aRC9!
Continuous

Measurements and
Request CRC

Yes -

aV! Start Verification No Not supported.

aD0! to aD9! Send Data Yes

Command automatically
sent by TBS09S, does not
have to be programmed.

Maximum number of
measurement values
limited to 32.

 Extended Commands No

 High Volume
Commands

No

 Metadata Commands No

6.3 MODBUS to SDI-12 communication principles

SDI-12 commands are encapsulated by MODBUS which acts as a communication layer.

Each MODBUS request and response are fully compliant with MODBUS protocol standard.

Each request must be executed sequentially so SDI-12 measurement command is sent and the corresponding
data command shall be then sent before executing another measurement command.

The overall measurement procedure can be summarized in few steps:

1. Program SDI-12 command(s) to be executed:

a. MODBUS function code: 0x06 (Write Single Register)

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 9

b. SDI-12 commands stored in MODBUS holding registers (configuration registers)

c. Maximum of 32 SDI-12 commands.

d. Write only one commands or a set of commands one by one.

e. Content can be read back with MODBUS function code 0x03 (Read Holding Register)

2. Check for each programmed command the measurement time ttt and number of expected values n/nn

a. MODBUS function code: 0x04 (Read Input Register)

b. Measurement time and number of measurements stored in MODBUS input registers (read-only)

c. This step is optional (especially when the use already has access to this information from the SDI-
12 sensors data sheets).

3. Trigger SDI-12 measurement.

a. MODBUS function code: 0x05 (Write Single Coil)

b. Triggers the execution of the corresponding SDI-12 command

4. Retrieve measurement values returned by the executed SDI-12 command.

a. MODBUS function code:0x04 (Read Input Register)

6.3.1 TBS09S MODBUS registers mapping

Addresses
Holding

Registers
Input Registers Coil Registers

0x00

32 registers
to configure

up to 32 SDI-
12

commands

Cmd_index_0

32 registers to
hold the

measurement
time ttt and
number of
returned

parameters n
for each

programmed
SDI-12

command

tttnn_index0

32 registers to
trigger the

execution of
corresponding
programmed

SDI-12
command

Cmd_index_0

0x01 Cmd_index_1 tttnn_index1 Cmd_index_1

0x02 Cmd_index_2 tttnn_index2 Cmd_index_2

… …

… …

… …

… …

… …

0x1E Cmd_index_30 tttnn_index30 Cmd_index_30

0x1F Cmd_index_31 tttnn_index31 Cmd_index_31

0x20 Command status register

0x21

64 registers to
hold 32

measurement
values (32

bits
hexadecimal

float numbers,
big-endian)

Value_index_0
0x22

0x23
Value_index_1

0x24

… …

… …

0x5B
Value_index_29

0x5C

0x5D Value_index_30

0x5E

0x5F Value_index_31

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 10

0x60

5 memory areas are used by TBS09S:

• Holding registers: configuration of SDI-12 commands to be executed

• Input registers contain:

o Executed SDI-12 command status

o SDI-12 measurement time and parameters for each programmed SDI-12 command

o SDI-12 measurement values

• Coil registers: used to trigger a specific SDI-12 command execution

For addresses between 0x00 and 0x1F, it is important to note that corresponding holding register, input register
and coil register are related to each other.

For instance, holding register 0x03 contains the SDI-12 command 3M!, input register 0x03 contains tttn=0102 (cf
SDI-12 delay and parameters number for further details) for SDI-12 command 3M! and the coil register 0x03 is
used to start the execution of SDI-12 command 3M!.

Address Holding register Input register Coil register

0x03 3M! 0102 ON

6.3.2 SDI-12 commands configuration

Holding registers 0x00 to 0x1F are used for that purpose.

Each register can be used to configure a specific SDI-12 address and command:

Holding registers 0x00 to 0x1F structure

Byte_Hi SDI-12 address (hexadecimal ASCII value)

Byte_Lo Encoded SDI-12 command

The SDI-12 address is simply represented by its corresponding ASCII value in hexadecimal:

SDI-12 address Encoded SDI-12 address

0 - 9 0x30 – 0x39

A – Z 0x41 – 0x5A

a - z 0x61 – 0x7A

The SDI-12 command is encoded based on specific rules depending on its type and following look-up tables can
be used to find the encoded command corresponding to a specific SDI-12 command:

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 11

Command:
aCx!

Encoded Cmd
(Byte 2)

Command:
aMx!

Encoded Cmd
(Byte 2)

Command:
aRx!

Encoded Cmd
(Byte 2)

aC! 0x73 aM! 0x7D aR! 0xA2

aC1! 0x74 aM1! 0x7E aR1! 0xA3

aC2! 0x75 aM2! 0x7F aR2! 0xA4

aC3! 0x76 aM3! 0x80 aR3! 0xA5

aC4! 0x77 aM4! 0x81 aR4! 0xA6

aC5! 0x78 aM5! 0x82 aR5! 0xA7

aC6! 0x79 aM6! 0x83 aR6! 0xA8

aC7! 0x7A aM7! 0x84 aR7! 0xA9

aC8! 0x7B aM8! 0x85 aR8! 0xAA

aC9! 0x7C aM9! 0x86 aR9! 0xAB

Command:
aCCx!

Encoded Cmd
(Byte 2)

Command:
aMCx!

Encoded Cmd
(Byte 2)

Command:
aRCx!

Encoded Cmd
(Byte 2)

aCC! 0xB6 aMC! 0xC0 aRC! 0xE5

aCC1! 0xB7 aMC1! 0xC1 aRC1! 0xE6

aCC2! 0xB8 aMC2! 0xC2 aRC2! 0xE7

aCC3! 0xB9 aMC3! 0xC3 aRC3! 0xE8

aCC4! 0xBA aMC4! 0xC4 aRC4! 0xE9

aCC5! 0xBB aMC5! 0xC5 aRC5! 0xEA

aCC6! 0xBC aMC6! 0xC6 aRC6! 0xEB

aCC7! 0xBD aMC7! 0xC7 aRC7! 0xEC

aCC8! 0xBE aMC8! 0xC8 aRC8! 0xED

aCC9! 0xBF aMC9! 0xC9 aRC9! 0xEE

Command:
aAb!

Encoded Cmd
(Byte 2)

Command:
aAb!

Encoded Cmd
(Byte 2)

Command:
aAb!

Encoded Cmd
(Byte 2)

aA0! 0x01 aAA! 0x12 aAa! 0x32

aA1! 0x02 aAB! 0x13 aAb! 0x33

aA2! 0x03 aAC! 0x14 aAc! 0x34

aA3! 0x04 aAD! 0x15 aAd! 0x35

aA4! 0x05 aAE 0x16 aAe! 0x36

aA5! 0x06 aAF 0x17 aAf! 0x37

aA6! 0x07 aAG 0x18 aAg! 0x38

aA7! 0x08 aAH 0x19 aAh! 0x39

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 12

aA8! 0x09 aAI 0x1A aAi! 0x3A

aA9! 0x0A aAJ 0x1B aAj! 0x3B

aAK 0x1C aAk! 0x3C

aAL 0x1D aAl! 0x3D

aAM 0x1E aAm! 0x3E

aAN! 0x1F aAn! 0x3F

aAO! 0x20 aAo! 0x40

aAP! 0x21 aAp! 0x41

aAQ! 0x22 aAq! 0x42

aAR! 0x23 aAr! 0x43

aAS! 0x24 aAs! 0x44

aAT! 0x25 aAt! 0x45

aAU! 0x26 aAu! 0x46

aAV! 0x27 aAv! 0x47

aAW! 0x28 aAw! 0x48

aAX! 0x29 aAx! 0x49

aAY! 0x2A aAy! 0x4A

aAZ! 0x2B aAz! 0x4B

Other commands
Encoded Cmd

(Byte 2)

aI! 0x69

?! or a! 0x00

Below tables are given for information purpose only and provide insights how the encoding rule has been designed
(an index 0 to 9 encoded as 0x30 to 0x39 is systematically used for all measurement commands encoding; not
applicable for SDI-12 Identification and Change Address commands).

For each command, a full example is provided with each byte values (SDI-12 address and SDI-12 command).

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 13

4.3.6.1 aMx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aM!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0x7D 0x4D + 0x30 0M! 0x30 0x7D

2 aM1! 0x7E 0x4D + 0x31 3M1! 0x33 0x7E

3 aM2! 0x7F 0x4D + 0x32 6M2! 0x36 0x7F

4 aM3! 0x80 0x4D + 0x33 9M3! 0x39 0x80

5 aM4! 0x81 0x4D + 0x34 AM4! 0x41 0x81

6 aM5! 0x82 0x4D + 0x35 HM5! 0x48 0x82

7 aM6! 0x83 0x4D + 0x36 YM6! 0x59 0x83

8 aM7! 0x84 0x4D + 0x37 bM7! 0x62 0x84

9 aM8! 0x85 0x4D + 0x38 mM8! 0x6D 0x85

10 aM9! 0x86 0x4D + 0x39 xM9! 0x78 0x86

4.3.6.2 aMCx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aMC!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0xC0 0x4D + 0x43 + 0x30 0MC! 0x30 0xC0

2 aMC1! 0xC1 0x4D + 0x43 + 0x31 3MC1! 0x33 0xC1

3 aMC2! 0xC2 0x4D + 0x43 + 0x32 6MC2! 0x36 0xC2

4 aMC3! 0xC3 0x4D + 0x43 + 0x33 9MC3! 0x39 0xC3

5 aMC4! 0xC4 0x4D + 0x43 + 0x34 AMC4! 0x41 0xC4

6 aMC5! 0xC5 0x4D + 0x43 + 0x35 HMC5! 0x48 0xC5

7 aMC6! 0xC6 0x4D + 0x43 + 0x36 YMC6! 0x59 0xC6

8 aMC7! 0xC7 0x4D + 0x43 + 0x37 bMC7! 0x62 0xC7

9 aMC8! 0xC8 0x4D + 0x43 + 0x38 mMC8! 0x6D 0xC8

10 aMC9! 0xC9 0x4D + 0x43 + 0x39 xMC9! 0x78 0xC9

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 14

4.3.6.3 aCx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aC!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0x73 0x43 + 0x30 0C! 0x30 0x73

2 aC1! 0x74 0x43 + 0x31 3C1! 0x33 0x74

3 aC2! 0x75 0x43 + 0x32 6C2! 0x36 0x75

4 aC3! 0x76 0x43 + 0x33 9C3! 0x39 0x76

5 aC4! 0x77 0x43 + 0x34 AC4! 0x41 0x77

6 aC5! 0x78 0x43 + 0x35 HC5! 0x48 0x78

7 aC6! 0x79 0x43 + 0x36 YC6! 0x59 0x79

8 aC7! 0x7A 0x43 + 0x37 bC7! 0x62 0x7A

9 aC8! 0x7B 0x43 + 0x38 mC8! 0x6D 0x7B

10 aC9! 0x7C 0x43 + 0x39 xC9! 0x78 0x7C

4.3.6.4 aCCx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aCC!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0xB6 0x43 + 0x43 + 0x30 0CC! 0x30 0xB6

2 aCC1! 0xB7 0x43 + 0x43 + 0x31 3CC1! 0x33 0xB7

3 aCC2! 0xB8 0x43 + 0x43 + 0x32 6CC2! 0x36 0xB8

4 aCC3! 0xB9 0x43 + 0x43 + 0x33 9CC3! 0x39 0xB9

5 aCC4! 0xBA 0x43 + 0x43 + 0x34 ACC4! 0x41 0xBA

6 aCC5! 0xBB 0x43 + 0x43 + 0x35 HCC5! 0x48 0xBB

7 aCC6! 0xBC 0x43 + 0x43 + 0x36 YCC6! 0x59 0xBC

8 aCC7! 0xBD 0x43 + 0x43 + 0x37 bCC7! 0x62 0xBD

9 aCC8! 0xBE 0x43 + 0x43 + 0x38 mCC8! 0x6D 0xBE

10 aCC9! 0xBF 0x43 + 0x43 + 0x39 xCC9! 0x78 0xBF

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 15

4.3.6.5 aRx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aR!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0xA2 *0x72 + 0x30 0R! 0x30 0xA2

2 aR1! 0xA3 *0x72 + 0x31 3R1! 0x33 0xA3

3 aR2! 0xA4 *0x72 + 0x32 6R2! 0x36 0xA4

4 aR3! 0xA5 *0x72 + 0x33 9R3! 0x39 0xA5

5 aR4! 0xA6 *0x72 + 0x34 AR4! 0x41 0xA6

6 aR5! 0xA7 *0x72 + 0x35 HR5! 0x48 0xA7

7 aR6! 0xA8 *0x72 + 0x36 YR6! 0x59 0xA8

8 aR7! 0xA9 *0x72 + 0x37 bR7! 0x62 0xA9

9 aR8! 0xAA *0x72 + 0x38 mR8! 0x6D 0xAA

10 aR9! 0xAB *0x72 + 0x39 xR9! 0x78 0xAB

(*) Note: Using hex value of 'r' (0x72) instead of 'R' (0x52), to avoid 'Byte 2' having the same value with other
commands.

4.3.6.6 aRCx! Commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 aRC!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0xE5 *0x72 + 0x43 + 0x30 0RC! 0x30 0xE5

2 aRC1! 0xE6 *0x72 + 0x43 + 0x31 3RC1! 0x33 0xE6

3 aRC2! 0xE7 *0x72 + 0x43 + 0x32 6RC2! 0x36 0xE7

4 aRC3! 0xE8 *0x72 + 0x43 + 0x33 9RC3! 0x39 0xE8

5 aRC4! 0xE9 *0x72 + 0x43 + 0x34 ARC4! 0x41 0xE9

6 aRC5! 0xEA *0x72 + 0x43 + 0x35 HRC5! 0x48 0xEA

7 aRC6! 0xEB *0x72 + 0x43 + 0x36 YRC6! 0x59 0xEB

8 aRC7! 0xEC *0x72 + 0x43 + 0x37 bRC7! 0x62 0xEC

9 aRC8! 0xED *0x72 + 0x43 + 0x38 mRC8! 0x6D 0xED

10 aRC9! 0xEE *0x72 + 0x43 + 0x39 xRC9! 0x78 0xEE

(*) Note: Using hex value of 'r' (0x72) instead of 'R' (0x52), to avoid 'Byte 2' having the same value with other
commands.

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 16

4.3.6.7 Other SDI-12 commands

NO Cmd
Byte 1 (Sensor

Address)
Byte 2
(Cmd)

Rule of byte 2
Example

Cmd Byte 1 Byte 2

1 ?! 0X3F 0x00 0x00 ?! 0x3F 0x00

2 a!

 0x30 - 0x39 (0 - 9)
 a = 0x41 - 0x5A (A - Z)
 0x61 - 0x7A (a - z)

0x00 0x00 0! 0x30 0x00

3 aI! 0x69 *i = 0x69 3I! 0x33 0x69

4 aAb! **b - 0x2F

 0x30 - 0x39 (0 -
9)
 b = 0x41 - 0x5A (A -
Z)
 0x61 - 0x7A (a -
z)

0A1! 0x30 0x02

1Aa! 0x31 0x32

aAB! 0x61 0x13

BAZ! 0x42 0x2B

(*) Note: Using hex value of 'i' (0x69) instead of 'I' (0x49), to avoid 'Byte 2' having the same value with other commands.
(**) Note: Subtract the 'b' to '0x2F' instead of plus with hex value 'A' (0x41), to avoid 'Byte 2' having the same value
with other commands.

6.3.3 SDI-12 delay and parameters number encoding

This information is stored by TBS09S into Input Registers 0x00 to 0x1F.

Input registers 0x00 to 0x1F structure

Byte_Hi SDI-12 command delay (hexadecimal)

Byte_Lo
SDI-12 delay number of parameters
(hexadecimal)

Example:

Input register 0x05: value 0x0A08

Byte_Hi 0x0A ➔ 10 seconds

Byte_Lo 0x08 ➔ 8 parameters

Notes:

• Both bytes are set to zero in case ?!, a!, aI! or aAb! SDI-12 command is executed.

• SDI-12 command measurement time is limited to 255s vs 999s in the SDI-12 standard.

• Number of returned measurement values is limited to 32 vs 99 in case of concurrent measurement.

• The SDI-12 delay retrieved from the input register corresponds to the SDI-12 delay returned by the SDI-
12 sensor increased by 1s. This is required to take into account internal TBS09S processing time.

6.3.4 Command status register

Whenever a MODBUS request is executed, the status register located at input register address 0x20 is updated.

Input register 0x20 structure (Command status register)

Byte_Hi Status code

Byte_Lo Corresponding holding register address

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 17

Status code

0x00 Unknown

0x11 OK

0xCC SDI-12 CRC error

0xEE Invalid command

0xFF Command process failed

Example:

Holding register 0x15 is programmed with 0x39C3 (9MC3! SDI-12 command).

The command 9MC3! is executed and then the status register value is 0xCC15, which means execution of the
SDI-12 command stored in holding register 0x15 (9MC3! in this example) failed due to a CRC error (0xCC).

6.3.5 SDI-12 commands activation

Each SDI-12 command configured in its holding register can be enabled by turning on its corresponding coil
register.

Coil registers 0x00 to 0x1F structure

Byte_Hi SDI-12 command activation: ON or OFF

Byte_Lo 0x00

SDI-12 command activation

0x00 OFF

0xFF ON

Example:

By writing 0xFF00 to coil register 0x12, the SDI-12 command programmed in holding register 0x12 will be
executed.

6.3.6 SDI-12 measurement values

Measurement values are stored in Input Registers 0x21 to 0x60.

Each value is encoded over 4 bytes (i.e., 2 registers) in hexadecimal floating point as per IEEE754 (a useful online
converter can be found at https://www.h-schmidt.net/FloatConverter/IEEE754.html).

A total of up to 32 values are then stored in TBS09S after the execution of a SDI-12 command. When a value is
not available (for instance only 5 measurements are expected), then the first 10 registers are populated whereas
other 54 registers left are set to zero.

Example:

SDI-12 measurement value index 1

0x23 0x41BE

0x24 0xF5C3

The value represented as hexadecimal float is 0x41BEF5C3 which is 23.87 in decimal.

https://www.h-schmidt.net/FloatConverter/IEEE754.html

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 18

6.3.7 TBS09S configuration and measurement flowchart

The following flowchart highlights the steps to follow to configure TBS09S and execute SDI-12 measurements.

After the MODBUS master has started the SDI-12 measurement procedure by writing to the desired Coil Register,
TBS09 is not able to process any other MODBUS command until it has updated the corresponding Input Register
with the measurement values.

Would the MODBUS master send any command or poll the Input Registers during that time, a timeout error will
occur.

Note:

• It is mandatory to add a minimum 1s delay between the execution of 2 MODBUS requests (whatever
the function code is). This is required to cope with internal TBS09S processing time.

• It is also recommended to configure the MODBUS master device with at least 2s for the MODBUS
response timeout.

• Below diagram highlights both MODBUS timeout and MODBUS requests delay:

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 19

6.4 Miscellaneous commands

6.4.1 Overview

Some extra MODBUS commands are provided by TBS09S to:

• Change TBS09S MODBUS address

• Check TBS09S FW version

• Reload default settings

These commands need to be written to any TBS09S holding register but unlike SDI-12 commands, they are
immediately executed and therefore does not require any further commands.

NO Cmd Byte 1 (Command) Byte 2 (Parameter) Rule of byte 2
Example

Cmd Byte 1 Byte 2

1
Change

Slave
Address

0xCA 0x00-0xFF
Change

slave address
from 0-255

addr: 5 0xCA 0x05

addr: 13 0xCA 0x0D

addr: 248 0xCA 0xF8

2

Get
Device

Firmware
Version

0xEF 0x00 0xEF00 0xEF 0x00

3
Get

Default
Setting

0xED 0x00 0xED00 0xED 0x00

However, it is strongly recommended to read back the content of the status register (Input Register 0x20) to ensure
the command has been correctly executed.

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 20

6.4.2 Change MODBUS address

This command must be very carefully executed as there’s no way to retrieve TBS09S MODBUS address if it has
been lost, unless by trying all addresses one by one.

It is therefore strongly recommended to read back the content of the status register (Input Register 0x20) to ensure
the command has been correctly executed before proceeding further.

Once the command has been successfully executed, the new MODBUS address is applied after turning off and
on TBS09S.

6.4.3 Get FW version

After executing this command, the FW version can be retrieved by reading Input Registers 0x21 to 0x2D.

The FW version consists in a hexadecimal ASCII string with following format:

Register address Data

0x21 0x3134

0x22 0x5445

0x23 0x4B42

0x24 0x4F58

0x25 0x564E

0x26 0x5442

0x27 0x5330

0x28 0x3953

0x29 0x7276

0x2A 0x4131

0x2B 0x3930

0x2C 0x3031

0x2D 0x3030

Converted to ASCII: 14TEKBOXVNTBS09SrvA1900100

Where:

• 14: SDI-12 standard v1.4

• TEKBOXVN: Tekbox Vietnam

• TBS09S: product name

• rvA: HW revision A

• 1900100: FW version 19.0.01.00

6.4.4 Reset to default settings

This command resets TBS09S to its default parameters:

• RS485: 19200 bauds, no parity, 1 stop bit, 8 data bits

• MODBUS slave address: 1

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 21

• All holding registers are cleared

After successful execution of this command (that can be confirmed by checking the status register 0x20), the
default configuration is restored after turning off/on TBS09S.

7 TBS09S configuration and communication examples

7.1 Using a PLC

The following examples are based on Click PLC Koyo C0-12DD1E-2-D communicating with TBS09S.

The initial setup is as follows:

• PLC: MODBUS RTU

• TBS09S MODBUS slave address: 1

• SDI-12 sensor: TBSSPP1 soil moisture and temperature cell, SDI-12 address: T

Also in below example, Holding Register 0x15 will be used to store the commands to be executed (could be any
other Holding Register as long as it’s within the range supported by TBS09S).

After executing any command stored in the Holding Registers, the status register shall be systematically checked
to ensure the success of the operation. This will be described only in the example related to TBS09S MODBUS
address change however it is strongly recommended to perform this check whenever a command is executed.

7.1.1 Change TBS09S MODBUS address

Change TBS09S MODBUS address from 1 to 5 by writing command 0xCA05 to Holding Register 0x15 using
MODBUS function code 0x06:

The command has been successfully executed; this can be checked by reading back the status register at Input
Register address 0x20:

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 22

• 0x11: Success

• 0x15: Holding Register address where the Change MODBUS Address command has been programmed.

TBS09S is then turned off/on so the new MODBUS slave address is applied.

Note:

It shall be noted that there are 2 different kinds of status, irrespective of the command that is executed:

• MODBUS status

o According to MODBUS standard, a response is sent back by the slave following a MODBUS
request sent by the master. In case of error, a specific MODBUS exception response is sent back.

o In this example, C39 coil is used to signal an error and the exception code is logged into PLC
DS40 register.

• TBS09S status

o This is the value stored in Input Register address 0x20 as described earlier in this document.

o This status is related to TBS09S processing and more specifically when a command stored in the
Holding Registers is executed.

7.1.2 Change SDI-12 sensor address

SDI-12 sensor address is changed from 0 to T by writing 0x3025 to Holding Register 0x15 using MODBUS function
code 0x06:

New SDI-12 address T is immediately applied.

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 23

7.1.3 Configure SDI-12 command

The PLC will program SDI-12 command TCC2! by writing 0x54B8 to Holding Register 0x15 using MODBUS
function code 0x06.

The PLC must then wait 1s before sending the next MODBUS request.

7.1.4 Read back configured SDI-12 command

This step is optional and is only to illustrate that at any time it’s possible to read back SDI-12 commands
configuration by reading corresponding Holding Register.

Read back Holding Register 0x15 using MODBUS function code 0x03:

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 24

The SDI-12 command has been correctly programmed:

The PLC must then wait 1s before sending the next MODBUS request.

7.1.5 Read SDI-12 measurement time and number of parameters

After programming the desired SDI-12 command, TBS09S gets SDI-12 parameters ttt and n and makes them
available in Input Register 0x15.

These parameters can be read back by using MODBUS function code 0x04.

0x0201 is read back:

• 0x02: delay 2s

• 0x01: number of measurement values 1

The PLC must then wait 1s before sending the next MODBUS request.

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 25

7.1.6 Trigger SDI-12 measurement

Command TCC2! will now be executed by turning on the Coil Register 0x15 using MODBUS function code 0x05:

Turning on this coil will trigger the SDI-12 measurement command programmed in Holding Register 0x15 (i.e.
TCC2!) and will automatically send SDI-12 data command TD0! Retrieve the measurement values.

The PLC needs then to wait for 2s (SDI-12 delay is 2s in this example) before reading the measurement value in
Input Registers from address 0x21.

7.1.7 Check SDI-12 command status register

After the 2 seconds delay period has expired, it is required to check TBS09S status register (Input Register 0x20)
to ensure the command has been successfully processed and executed:

Status register holds 0x1115:

• 0x11: command successfully executed

• 0x15: the SDI-12 command stored in Holding Register 0x15 has been executed

The PLC must then wait 1s before sending the next MODBUS request.

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 26

7.1.8 Retrieve SDI-12 measurement values

The temperature value returned by the sensor can be read by simply reading TBS09S Input Registers from
address 0x20 (Status register + measurement values registers) using MODBUS function code 4:

In this example all of the 64-measurement values register are read including the status register.

Since this sensor returns only one measurement value, it is held as a hexadecimal float number in the first 2
measurement registers (addresses 0x21 and 0x22):

The hexadecimal floating-point representation is 0x41DF020C which is +27.876 in decimal.

7.2 At MODBUS ADU level

Below example shows the ADU frames exchanged between a MOBUS RTU master and TBS09S (MODBUS
address 1) to perform measurements with an SDI-12 air temperature sensor.

When executing SDI-12 command M1!, the sensor returns 2 measurement values after 2s: humidity and then
temperature.

Command MODBUS MASTER -> TBS09S TBS09S -> MODBUS MASTER

0M1! 01 06 00 00 30 7E 1D EA
Write 0x307E (command M1!) to holding
register 0x00

01 06 00 00 30 7E 1D EA

Check status 01 04 00 20 00 01 30 00
Read status register (input register 0x20)

01 04 02 11 00 B5 60
Command stored at input register 0x00 (ie
0M1! In this example) has been
successfully executed

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 27

Read ttt and n 01 04 00 00 00 01 31 CA 01 04 02 02 02 39 91
Retrieve ttt=0x02 and the number of
measurements is 0x02

Write Coil 01 05 00 00 FF 00 8C 3A 01 05 00 00 FF 00 8C 3A

Read Humidity 01 04 00 21 00 02 21 C1
Read humidity stored as a float number in
input registers 0x21 and 0x22

01 04 04 42 44 1E B8 A6 3B
Humidity is 49.03% (0x42441EB8 in
hexadecimal float representation)

Read Temperature 01 04 00 23 00 02 80 01
Read temperature stored as a float
number in input registers 0x23 and 0x24

01 04 04 41 E0 A7 F0 94 3A
Temperature is 28.08 C̊ (0x41E0A7F0 in
hexadecimal float representation)

8 Communication protocols

8.1 SDI-12

SDI-12 is a standard for interfacing data recorders with microprocessor-based sensors. SDI-12 stands for
serial/digital interface at 1200 baud. It can connect multiple sensors with a single data recorder on one cable. It
supports up to 60 meters cable between a sensor and a data logger.

The SDI-12 standard is prepared by

SDI-12 Support Group
(Technical Committee)
165 East 500 South
River Heights, Utah
435-752-4200
435-752-1691 (FAX)
http://www.sdi-12.org

The standard is available on the website of the SDI-12 Support Group.

8.2 MODBUS

The MODBUS standard is managed by Modbus Organization and the reference MODBUS Application Protocol is
available on their website: https://www.modbus.org/

9 Mechanical information
Housing Length (mm) Width (mm) Height (mm)

DIN rail 90.2 36.3 41.9

FIBOX 120 80 55

http://www.sdi-12.org/
https://www.modbus.org/

V2.2

TBS09S

MODBUS Master to SDI-12 Slave Converter

 28

10 Environmental specification
Symbol Parameter Conditions Min Max Unit

TA
Operating Ambient
Temperature Range

DIN rail: standard room
humidity levels.

+20 +30 °C

TSTG
Storage Temperature
Range

DIN rail housing -20 +80
°C

FIBOX housing -40 +140

- Waterproofness
DIN rail: no, indoor use only

-
FIBOX: yes, IP67

11 Ordering information
Part Number Description

TBS09S MODBUS master to SDI-12 slave converter – FIBOX housing

TBS09SDR MODBUS master to SDI-12 slave converter – DIN rail housing

TBS09J 7 ports MODBUS junction box (half/full duplex) – FIBOX housing

12 History

 Version Date Author Changes

V1.0 9.8.2018 Thinh Creation of the document

V1.1 9.19.2019 Thinh Update new command

V1.5 24.6.2020 Hoa Hoang
Updated naming to MODBUS Master to SDI 12 Slave
Converter

V1.6 15.7.2020 Mayerhofer Complete rework of the document

V1.7 17.7.2020 Philippe Updated link in 5.5

V1.8 2.4.2021 Mayerhofer Updated drawing in chapter 1

V1.9 22.07.2021 Philippe Hervieu Fix typo in 5.4.2 (Read returned SDI-12 address)

V1.10 08.08.2022 Philippe Hervieu 120 Ohm termination set by default.

V2.0 07.09.2023 Philippe Hervieu User manual reworked following FW upgrade.

V2.1 11.04.2025 Philippe Hervieu Fix few typo errors and add an example using ADU.

V2.2 05.06.2025 Philippe Hervieu Change product picture

