V2.2
TBS00S TEKBO>

DIGITAL SOLUTIONS

MODBUS Master to SDI 12 Slave Converter

The TBS09S is a converter to connect SDI-12 sensors to a MODBUS master. It can control multiple
SDI12 sensors in parallel by individually addressing the connected SDI-12 sensors.

TBS09S MODBUS Master to SDI 12 Slave Converter

© 2025 Tekbox Digital Solutions
Factory 4, F4, Lot I-3B-1, Saigon HiTech Park, Q.9 | Ho Chi Minh City | Tel +84 287 1099865| office@tekbox.com| www.tekbox.com

a A W N P

9

huiy

NS

1

FTEKBO>XX

1

MODBUS Master to SDI-12 Slave Converter

INTRODUCTION

PRODUCT SPECIFICATION
CALIBRATION AND SETTINGS
CONNECTIONS

MODBUS CONFIGURATION

51 HW CONFIGURATION
52 RS485 CONFIGURATION

SENDING SDI-12 COMMANDS THROUGH TBS09S

6.1 LIMITATIONS
6.2 SUPPORTED SDI-12 COMMANDS
6.3 MODBUS 10 SDI-12 COMMUNICATION PRINCIPLES

6.3.1 TBS09S MODBUS registers mapping

6.3.2 SDI-12 commands configuration

6.3.3 SDI-12 delay and parameters number encoding
6.3.4 Command status register

6.3.5 SDI-12 commands activation

6.3.6 SDI-12 measurement values

6.3.7 TBSO09S configuration and measurement flowchart

6.4 MISCELLANEOUS COMMANDS

6.4.1 Overview

6.4.2 Change MODBUS address
6.4.3 Get FW version

6.4.4 Reset to default settings

TBS09S CONFIGURATION AND COMMUNICATION EXAMPLES

7.1 USING A PLC

7.1.1 Change TBS09S MODBUS address

7.1.2 Change SDI-12 sensor address

7.1.3 Configure SDI-12 command

7.1.4 Read back configured SDI-12 command

7.1.5 Read SDI-12 measurement time and number of parameters
7.1.6 Trigger SDI-12 measurement

7.1.7 Check SDI-12 command status register

7.1.8 Retrieve SDI-12 measurement values

7.2 AT MODBUS ADU LEVEL

COMMUNICATION PROTOCOLS

8.1 SDI-12
8.2 MODBUS

MECHANICAL INFORMATION

10 ENVIRONMENTAL SPECIFICATION
11 ORDERING INFORMATION
12 HISTORY

©CoOo~N~N N OO0 o 0o b W W

7ﬁ;;'n'rEEJ<ZE3C3)x(
MODBUS Master to SDI-12 Slave Converter

The TBS09S is a converter to connect one or multiple SDI-12 sensors to a MODBUS device such as a data
logger or telemetry unit. The converter is inserted in between the data logger or RTU with MODBUS interface
and the sensor(s) with SDI-12 interface. The designation MODBUS Master to SDI-12 Slave is ambiguous.
Looking purely at the converter, the device got a MODBUS slave interface on one side and a SDI-12 master
output at the other side. However, looking at its application, the device is a converter between a MODBUS
master (data logger, RTU, etc.) and a SDI-12 slave (sensor with SDI-12 interface).

The following diagrams describe a typical use of TBS09S module that bridges a MODBUS telemetry unit with a
SDI-12 sensor and highlight how the internal TBS09S MODBUS/SDI-12 layers interact with them.

SDI-12 Slave Converter Modbus Master

Sensors with
SDI-12 IF

Data logger or
telemetry unit

TB5095 with Modbus IF

I

-
SENSOR SDI-12IF | sDI-12 SDI-12 IF TBS09S Modbus IF | Modbus Modbus IF] TELEMETRY
44—
(lave) | (Master) | CONVERTER (slave) | (Master) UNIT
\

TBS09S application

e Application: converter used to interface MODBUS master devices (e.g., RTU) with SDI-12 slave devices
(e.g., sensors)
o The converter embeds MODBUS slave and SDI-12 master modules
e SDI-12 compatibility:
o Version: v1.4

\ﬁﬁ TEK B>
MODBUS Master to SDI-12 Slave Converter

o SDI-12 commands not supported: aV!, extended commands, high volume commands, metadata
commands.
o Data command supports up to 32 measurements maximum
e MODBUS compatibility:
o Protocol: MODBUS RTU
= Required supported function codes by MODBUS master: 0x01, 0x03, 0x04, 0x05, 0x06
o RS485 configuration:
* Baud rate: 19200
= Data length: 8 bits
»= Parity: none
= Stop bits: 1
o Half or full duplex (configurable)
o 120 Q termination (configurable)
e Supply voltage: 5-16 V
e Power consumption
o Current drawn by TBS09S without any SDI-12 measurements: 12 mA
o Warm-up time: 3s
e Form factor:
o DIN rail
o FIBOX (IP67 housing suitable for outdoor use)

TBS09S doesn’t require any calibration.
It comes factory-configured to operate by default in half duplex with termination.

This configuration can be changed by the user by setting related jumpers J3/J4/J5 after lifting the housing:

- ERAFE
= 2 B = BE o
;°=_°O . = $zr e D
3 E@ . 3 "
9 EM 1 €

CON2

CON3
(Ra4] [Rat]
=10
Bt 1
SEEER
©
€A
13}

g

MODBUS Master to SDI-12 Slave Converter

Communication mode:

Configuration J3 Default configuration
Half Duplex 4 v
Full Duplex X
MODBUS termination:
Configuration J4 - J5 Default configuration
120 Q termination 4 4
No termination x

TBSO09S provides one 4 slots connector (SDI-12) and one 6 slots connector (RS485):

Qo o ' @
e Qg @
l'jl SF @ I’o".
o5 §.fﬂ i<
ok ilid °®
o A)

SDI-12 terminal assignment, from top to bottom:

Slot name Description Comment
Shield Cable shield Connect to sensor’s
cable shield
Ground Ground Connect to ground
Data SDI-12 data line Connect to SDI-12
sensor data line
Power TBSO09S supply voltage Connect to +12V external
input power supply

RS485 terminal assignment, from top to bottom:

Slot name

Description

Comment

T+

TXD+ output

Connect to MODBUS
master RXD+

huiy

NS

1

FTEKBO>XX

1

MODBUS Master to SDI-12 Slave Converter

TXD- output

Connect to MODBUS
master RXD-

R+

RXD+ input

Connect to MODBUS
master TXD+ (full
duplex operation only —
must be left
unconnected in half
duplex)

RXD- input

Connect to MODBUS
master TXD- (full duplex
operation only — must
be left unconnected in
half duplex)

Ground

Connect to ground

SDI-12 sensor supply
voltage output (+12V,
connected to the
converter supply line
through a high side FET
switch)

Connect to SDI-12
sensor power line.

MODBUS RTU communication over RS485 can be set in either half or full duplex and 120Q termination can be

added as well.

It is advised to use 120Q termination in case many MODBUS slave devices including TBS09S are sharing the

same bus.

RS485 communication parameters are set as follows:

Feature Default setting
Baud rate 19200 bauds
Data bits 8
Parity None
Stop bits 1
TBSO09S slave address 1

These settings can’t be changed except for TBS09S MODBUS address.

For other RS485 configurations, please send a request to Tekbox Customer Support Team.

mailto:sales@tekbox.com?subject=TBS09S%20/%20Custom%20RS485%20settings

W‘ﬁﬁ TEK B>
MODBUS Master to SDI-12 Slave Converter

Due to the fact SDI-12 and MODBUS RTU are totally different communication stacks and also due to memory
constraints on the module, TBS09S does not fully support SDI-12 protocol as described in v1.4 specification.

Limitations vs SDI-12 v1.4 specification:
e Extended SDI-12 commands are not supported

Verification command V! is not supported

Maximum of 32 measurement values vs 99 in SDI-12 standard

SDI-12 measurement time up to 255s vs 999s in SDI-12 standard

aCx! commands are supported nevertheless they’re not handled as concurrent measurement

aMx! service request can’t be signaled to the MODBUS master

Data commands are automatically handled by TBS09S so the MODBUS master only needs to retrieve

the measurements after sending the measurement command.

e The limitations and communication principles between the MODBUS master and SDI-12 sensors is
discussed in detail in a dedicated chapter.

Supported SDI-12 address range is aligned with SDI-12 v1.4 specification:

e 0-9
e A-7
o a—2z

TBS09S embeds a full SDI-12 v1.4 stack, nevertheless only most of SDI-12 v1.3 commands are supported for
MODBUS to SDI-12 conversion with some restrictions. Further support might be extended in a future HW&FW
upgrade.

The following table lists SDI-12 v1.4 commands and their support by TBS09S and highlights any limitations or
restrictions vs SDI-12 standard:

SDI-12 command Description TBS09S support Comments
?! Address Query Yes -
al Acknowledge Active Yes -
al! Send Identification Yes -
aAb! Change Address Yes -
aM! Start Measurement Yes
Although TBS09S handles
aMC! Start Measurement Yes the service request, this is
and Request CRC transparent for the
Additional MODBUS master as it
| |
aM1! to aM9! Measurements Yes can’t be notified about it.
Additional Only polling the status
aMC1! to aMC9! Measurements and Yes register for the ready flag

Request CRC could help knowing earlier

W‘ﬁﬁ TEK B>
MODBUS Master to SDI-12 Slave Converter

that the measurements
are available.

Measurement time limited
to 255s.

Start Concurrent

As TBS09S must receive

|
ac! Measurement es new SDI-12 measurement
Start Concurrent commands over MODBUS
aCC! Measurement and Yes only once the
Request CRC measurement values have
Addit C " been retrieved, true
aC1! to aC9! :vllona oncurren Yes concurrent measurements
easurement are not possible.
| | i
Additional Concurrent ecke"jlcnuo':ir?cl-\/l?/rl\e/zl gerely like
aCCl1!to aCC9! Measurement and Yes g R
Request CRC Measurement time limited
to 255s.
aR0! to aR9! Continuous Yes -
Measurements
Continuous
aRCO0! to aRC9! Measurements and Yes -
Request CRC
av! Start Verification No Not supported.
Command automatically
sent by TBS09S, does not
have to be programmed.
aDO0! to aD9! Send Data Yes . brog
Maximum number of
measurement values
limited to 32.
Extended Commands No
High Volume No
Commands
Metadata Commands No

SDI-12 commands are encapsulated by MODBUS which acts as a communication layer.

Each MODBUS request and response are fully compliant with MODBUS protocol standard.

Each request must be executed sequentially so SDI-12 measurement command is sent and the corresponding

data command shall be then sent before executing another measurement command.

The overall measurement procedure can be summarized in few steps:
1. Program SDI-12 command(s) to be executed:
a. MODBUS function code: 0x06 (Write Single Register)

oo o

e.

a.

C.

i)

7 W TEK B>

MODBUS Master to SDI-12 Slave Converter

SDI-12 commands stored in MODBUS holding registers (configuration registers)
Maximum of 32 SDI-12 commands.
Write only one commands or a set of commands one by one.
Content can be read back with MODBUS function code 0x03 (Read Holding Register)

2. Check for each programmed command the measurement time ttt and number of expected values n/nn
MODBUS function code: 0x04 (Read Input Register)
b. Measurement time and number of measurements stored in MODBUS input registers (read-only)
This step is optional (especially when the use already has access to this information from the SDI-

12 sensors data sheets).

3. Trigger SDI-12 measurement.

a.

MODBUS function code: 0x05 (Write Single Coil)

b. Triggers the execution of the corresponding SDI-12 command
4. Retrieve measurement values returned by the executed SDI-12 command.

a. MODBUS function code:0x04 (Read Input Register)
Holdin . . .
Addresses) g Input Registers Coil Registers
Registers
0x00 Cmd_index_0 tttnn_index0 Cmd_index_0
0x01 Cmd_index_1 32 registers to tttnn_index1 Cmd_index_1
i hold the i i
0x02 Cmd_index_2 measurement tttnn_index2 32 registers to Cmd_index_2
32 registers time ttt and trigger the
to configure number of execution of
up to 32 SDI- returned corresponding
12 parameters n programmed
commands for each SDI-12
programmed command
Ox1E Cmd_index_30 SDI-12 tttnn_index30 Cmd_index_30
- - command - - -
Ox1F Cmd_index_31 tttnn_index31 Cmd_index_31
0x20 Command status register
0x21 :
Value_index_0
0x22
0x23 64 registers to | vajue_index_1
0x24 hold 32
measurement
values (32
bits
0x5B i
hexadecimal Value_index_29
0x5C float numbers,
0x5D big-endian) Value_index_30
Ox5E

Ox5F

Value_index_31

Ty TEKBO>K

g

MODBUS Master to SDI-12 Slave Converter

0x60 \ | | \

5 memory areas are used by TBS09S:
e Holding registers: configuration of SDI-12 commands to be executed
e Input registers contain:
o Executed SDI-12 command status
o SDI-12 measurement time and parameters for each programmed SDI-12 command
o SDI-12 measurement values
e Coil registers: used to trigger a specific SDI-12 command execution

For addresses between 0x00 and Ox1F, it is important to note that corresponding holding register, input register
and coil register are related to each other.

For instance, holding register 0x03 contains the SDI-12 command 3M!, input register 0x03 contains tttn=0102 (cf
SDI-12 delay and parameters number for further details) for SDI-12 command 3M! and the coil register 0x03 is
used to start the execution of SDI-12 command 3M!.

Address Holding register Input register Coll register
0x03 3Mm! 0102 ON

Holding registers 0x00 to Ox1F are used for that purpose.

Each register can be used to configure a specific SDI-12 address and command:
Holding registers 0x00 to Ox1F structure
Byte_Hi SDI-12 address (hexadecimal ASCII value)
Byte Lo Encoded SDI-12 command

The SDI-12 address is simply represented by its corresponding ASCII value in hexadecimal:

SDI-12 address Encoded SDI-12 address
0-9 0x30 — 0x39
A-Z 0x41 — Ox5A
a-z 0x61 — Ox7A

The SDI-12 command is encoded based on specific rules depending on its type and following look-up tables can
be used to find the encoded command corresponding to a specific SDI-12 command:

10

MODBUS Master to SDI-12 Slave Cohﬁ

s

L

verter

Command: | Encoded Cmd | Command: | Encoded Cmd | Command: | Encoded Cmd
aCx! (Byte 2) aMx! (Byte 2) aRx! (Byte 2)

acC! 0x73 aM! 0x7D aR! 0xA2

aCl! 0x74 amM1! Ox7E aR1! 0xA3

acC2! 0x75 aM2! Ox7F aR2! 0xA4

aC3! 0x76 aM3! 0x80 aR3! OxA5

ac4! 0x77 aM4! 0x81 aR4! OxA6

aCs! 0x78 aM5! 0x82 aR5! O0xA7

ace! 0x79 aMe! 0x83 aRe! 0xA8

aC7! 0x7A aM7! 0x84 aR7! 0xA9

acs! 0x7B ama! 0x85 aR8! OxAA

ac9! 0x7C aMo! 0x86 aR9! 0xAB

Command: | Encoded Cmd | Command: | Encoded Cmd | Command: | Encoded Cmd
aCCx! (Byte 2) aMCx! (Byte 2) aRCx! (Byte 2)

aCcC! 0xB6 aMC! 0xCO0 aRC! OxE5

aCC1! 0xB7 aMC1! 0xC1 aRC1! OxE6

aCc2! 0xB8 aMcC2! 0xC2 aRC2! OxE7

aCc3! 0xB9 aMC3! 0xC3 aRC3! OxE8

aCc4! O0xBA aMC4! 0xC4 aRC4! OxE9

aCC5! O0xBB aMC5! 0xC5 aRC5! OxEA

aCce! 0xBC aMCe6! 0xC6 aRC6! OxEB

aCC7! 0xBD aMC7! 0xC7 aRC7! OxEC

aCcs! OxBE aMC8! 0xC8 aRC8! OxED

aCco! OxBF aMC9! 0xC9 aRC9! OxEE

Command: | Encoded Cmd | Command: | Encoded Cmd | Command: | Encoded Cmd
aAb! (Byte 2) aAb! (Byte 2) aAb! (Byte 2)

aA0! 0x01 aAAl 0x12 aAal 0x32

aAl! 0x02 aAB! 0x13 aAb! 0x33

aA2! 0x03 aAC! 0x14 aAc! 0x34

aA3! 0x04 aAD! 0x15 aAd! 0x35

aA4! 0x05 aAE 0x16 aAe! 0x36

aA5! 0x06 aAF 0x17 aAf! 0x37

aA6! 0x07 aAG 0x18 aAg! 0x38

aA7! 0x08 aAH 0x19 aAh! 0x39

11

[

Ruigi

J\

FTEKBO>XX

MODBUS Master to SDI-12 Slave Converter

aA8! 0x09 aAl Ox1A aAil 0x3A
aA9! O0x0A aAl 0x1B aAj! 0x3B
aAK 0x1C aAk! 0x3C
aAL 0x1D aAll 0x3D
aAM Ox1E aAm! 0x3E
aAN! Ox1F aAn! O0x3F
aAO! 0x20 aAo! 0x40
aAP! 0x21 aAp! 0x41
aAQ! 0x22 aAq! 0x42
aAR! 0x23 aAr! 0x43
aAS! 0x24 aAs! 0x44
aAT! 0x25 aAt! 0x45
aAU! 0x26 aAu! 0x46
aAv! 0x27 aAv! 0x47
aAW! 0x28 aAw! 0x48
aAX! 0x29 aAx! 0x49
aAy! 0x2A aAy! Ox4A
aAZ! 0x2B aAz! 0x4B

Encoded Cmd
Other commands (Byte 2)
al! 0x69
?loral 0x00

Below tables are given for information purpose only and provide insights how the encoding rule has been designed
(an index 0 to 9 encoded as 0x30 to 0x39 is systematically used for all measurement commands encoding; not

applicable for SDI-12 Identification and Change Address commands).

For each command, a full example is provided with each byte values (SDI-12 address and SDI-12 command).

12

MODBUS Master to SDI-12 Slave Converter

[+

Example
NO | Cmd IR LT Byte 2 Rule of byte 2 E
Address) (Cmd) Cmd Byte 1 Byte 2

1 | am! 0x7D 0x4D + 0x30 oMm! 0x30 0x7D
2 | ami! Ox7E 0x4D + 0x31 3M1! 0x33 Ox7E
3 | am2! Ox7F 0x4D + 0x32 6M2! 0x36 Ox7F
4 | am3! 0x80 0x4D + 0x33 9M3! 0x39 0x80
5 | amal 0x30-0x39(0-9) gy 0x4D + 0x34 AM4! 0x41 0x81
6 lams | 27 O4L-O0AWA-2) Folo 0x4D + Ox35 HM5! | 0x48 0x82

Ao 0x61-0x7A (a-2) |- X+ X : X X
7 | ame! 0x83 0x4D + 0x36 YM6! 0x59 0x83
8 | am7! 0x84 0x4D + 0x37 bM7! 0x62 0x84
9 aM8! 0x85 0x4D + 0x38 mM8! 0ox6D 0x85
10 | aM9! 0x86 0x4D + 0x39 xM9! 0x78 0x86

B 1 B 2 Example
NO | Cmd UIRE T yte Rule of byte 2 :
Address) (Cmd) Cmd Byte 1 Byte 2
1 | amc! 0xCO 0x4D +0x43 +0x30 | OMC! 0x30 0xCO
2 | amci! 0xC1 0x4D +0x43 +0x31 | 3MC1! 0x33 0xC1
3 | amc2! 0xC2 0x4D +0x43 +0x32 | 6MC2! 0x36 0xC2
4 | amc3! 0430 - 0x39 (0-) 0xC3 0x4D +0x43 +0x33 | 9MC3! 0x39 0xC3
X - UX -

5 MCa4! 0xC4 0x4D +0x43 +0x34 | AMC4! 0x41 0xC4
- a | a= 0x41- OGA(A-2) X X X X e as X

aMC5! OX61- Ox7A (a-2) |OxC5 0x4D + 0x43 + 0x35 ! X 0xC5
7 aMce! 0xC6 0x4D + 0x43 + 0x36 YMC6! 0x59 0xC6
8 | amcy! 0xC7 0x4D +0x43 +0x37 | bMC7! 0x62 0xC7
9 | amcs! 0xC8 Ox4D +0x43 +0x38 | mMC8! 0x6D 0xC8
10 | am(C9! 0xC9 0x4D + 0x43 + 0x39 xMC9! 0x78 0xC9

13

1
MODBUS Master to SDI-12 Slave Con

L

verter

NO | cmd Byte 1 (Sensor Byte 2 Rule of byte 2 Example
Address) (Cmd) Cmd Byte 1 Byte 2
1 aC! 0x73 0x43 + 0x30 ocC! 0x30 0x73
2 aC1! 0x74 0x43 + 0x31 3C1! 0x33 0x74
3 ac2! 0x75 0x43 + 0x32 6C2! 0x36 0x75
4 aC3! 0X30 - 0x39 (0 - 9) 0x76 0x43 + 0x33 9C3! 0x39 0x76
5 ! + AC4! 0x41
6 :E:! a= &al-0GAA-) 85; 853 ¥ 82: HCS! | ox4s8 gz;;
0x61 - Ox7A (a - z)
7 ace! 0x79 0x43 + 0x36 YC6! 0x59 0x79
8 aC7! Ox7A 0x43 + 0x37 bC7! 0x62 Ox7A
9 acs! 0x7B 0x43 + 0x38 mC8! 0x6D 0x7B
10 | aC9! 0x7C 0x43 + 0x39 xC9! 0x78 0x7C
NO | cmd Byte 1 (Sensor Byte 2 Rule of byte 2 Example
Address) (Cmd) Cmd Byte 1 Byte 2
1 acc! 0OxB6 0x43 + 0x43 + 0x30 occ! 0x30 0xB6
2 acc1! OxB7 0x43 + 0x43 + 0x31 3CC1! 0x33 0xB7
3 aCc2! 0xB8 0x43 + 0x43 + 0x32 6CC2! 0x36 0xB8
4 aCc3! 0X30 - 0x39 (0 - 9) 0xB9 0x43 + 0x43 + 0x33 9CC3! 0x39 0xB9
5 41 + + ACC4! 0x41
6 :EES! 2= 0xal-0isA (A -2) gisg gii: + gig ¥ giz: HCCs! 0x48 gigg
0x61 - Ox7A (a - 2)
7 aCce! OxBC 0x43 + 0x43 + 0x36 YCC6! 0x59 OxBC
8 aCC7! 0xBD 0x43 + 0x43 + 0x37 bCC7! 0x62 0xBD
9 accs! OxBE 0x43 + 0x43 + 0x38 mCC8! 0x6D OxBE
10 | aCC9! OxBF 0x43 + 0x43 + 0x39 xCC9! 0x78 OxBF

14

l Iff_ﬁﬁ TEK B>

MODBUS Master to SDI-12 Slave Converter

NO | Cmd I & (BEresy Byte 2 Rule of byte 2 Example
Address) (Cmd) Cmd Byte 1 Byte 2

1 aR! OxA2 *0x72 + 0x30 OR! 0x30 0OxA2
2 aR1! OxA3 *0x72 + 0x31 3R1! 0x33 0OxA3
3 aR2! OxA4 *0x72 + 0x32 6R2! 0x36 OxA4
4 aR3! 0X30 - 0x39 (0 - 9) OxAS5 *0x72 + 0x33 9R3! 0x39 OxA5
5 ! XSV = X9 1L - *0x72 + AR4! 0x41

6 :Egl 2= 0al-0cA(A-2) giﬁj *ggi + gg: HRS! | 0x48 gzﬁs

: 0x61 - Ox7A (a - 2)

7 aRé6! 0xA8 *0x72 + 0x36 YR6! 0x59 0xA8
8 aR7! 0xA9 *0x72 + 0x37 bR7! 0x62 0xA9
9 aRs8! OxAA *0x72 + 0x38 mR8! 0x6D OxAA
10 | aR9! OxAB *0x72 + 0x39 xR9! 0x78 OxAB

(*) Note: Using hex value of 'r' (0x72) instead of 'R' (0x52), to avoid '‘Byte 2' having the same value with other
commands.

NOo | cmd Byte 1 (Sensor Byte 2 Rule of byte 2 Example
Address) (Cmd) Cmd Byte 1 Byte 2
1 aRC! OxE5 *0x72 + 0x43 + 0x30 ORC! 0x30 OxE5
2 aRC1! OxE6 *0x72 + 0x43 + 0x31 | 3RC1! 0x33 OxE6
3 aRC2! OxE7 *0x72 + 0x43 + 0x32 6RC2! 0x36 OXE7
4 aRC3! 0x30 - 039 (0 - 9) OxE8 *0x72 + 0x43 + 0x33 9RC3! 0x39 OxE8
5 RC4! XE *0x72 + 0x43 + 0x34 | ARC4! 0x41 XE
6 :ng 2= 0xal-0isA (A -2) ngi *gx72 + gxlé + gxzs HRC5! 0x48 ngi
: 0x61 - Ox7A (a - 2)

7 aRC6! OxEB *0x72 + 0x43 + 0x36 | YRC6! 0x59 OxEB
8 aRC7! OxEC *0x72 + 0x43 + 0x37 bRC7! 0x62 OxEC
9 aRCs8! OxED *0x72 + 0x43 + 0x38 | mRC8! 0x6D OxED
10 | aRC9! OxEE *0x72 + 0x43 + 0x39 xRC9! 0x78 OxEE

(*) Note: Using hex value of 'r' (0x72) instead of 'R' (0x52), to avoid 'Byte 2' having the same value with other
commands.

15

*{"[.'f]_‘q 7 TEKBO><

MODBUS Master to SDI-12 Slave Converter

Byte 1 (Sensor Byte 2 Example
NO | Cmd Rule of byte 2
Address) (Cmd) L Cmd Byte 1 Byte 2
1 ?l OX3F 0x00 0x00 ?l Ox3F 0x00
al 0x00 0x00 0! 0x30 0x00
al! 0x69 *i = 0x69 3! 0x33 0x69
0x30 - 0x39 (0 - 9) 0x30-0x39 (0- | OA1! 0x30 0x02
a= Ox41-0x5A (A-2) 9) 1Aal | 0x31 0x32
4 aAb! 0x61-0x7A (a-2) | **p-Ox2F Zt; = 0x41 - Ox5A (A~ aAB! 0x61 0x13
0x61 - Ox7A (a -

2) BAZ! 0x42 0x2B

(*) Note: Using hex value of 'i' (0x69) instead of 'l' (0x49), to avoid 'Byte 2' having the same value with other commands.
(**) Note: Subtract the 'b' to '0x2F' instead of plus with hex value 'A' (0x41), to avoid '‘Byte 2' having the same value
with other commands.

This information is stored by TBS09S into Input Registers 0x00 to Ox1F.

Input registers 0x00 to Ox1F structure
Byte Hi SDI-12 command delay (hexadecimal)
SDI-12 delay number of parameters
Byte_Lo (hexadecimal)
Example:
Input register 0x05: value 0xOA08
Byte Hi 0x0A = 10 seconds
Byte Lo 0x08 =» 8 parameters
Notes:

e Both bytes are set to zero in case ?!, al, al! or aAb! SDI-12 command is executed.
e SDI-12 command measurement time is limited to 255s vs 999s in the SDI-12 standard.
e Number of returned measurement values is limited to 32 vs 99 in case of concurrent measurement.

e The SDI-12 delay retrieved from the input register corresponds to the SDI-12 delay returned by the SDI-
12 sensor increased by 1s. This is required to take into account internal TBS09S processing time.

Whenever a MODBUS request is executed, the status register located at input register address 0x20 is updated.
Input register 0x20 structure (Command status register)

Byte_ Hi Status code

Byte Lo Corresponding holding register address

16

g

MODBUS Master to SDI-12 Slave Converter

Status code

0x00 Unknown

0x11 OK

OxCC SDI-12 CRC error

OxEE Invalid command

OxFF Command process failed

Example:

Holding register 0x15 is programmed with 0x39C3 (9MC3! SDI-12 command).

The command 9MC3! is executed and then the status register value is 0XCC15, which means execution of the
SDI-12 command stored in holding register 0x15 (9MC3! in this example) failed due to a CRC error (0xCC).

Each SDI-12 command configured in its holding register can be enabled by turning on its corresponding coil

register.
Coil registers 0x00 to Ox1F structure
Byte Hi SDI-12 command activation: ON or OFF
Byte Lo 0x00
SDI-12 command activation
0x00 OFF
OxFF ON
Example:

By writing OxFFOO to coil register 0x12, the SDI-12 command programmed in holding register 0x12 will be

executed.

Measurement values are stored in Input Registers 0x21 to 0x60.

Each value is encoded over 4 bytes (i.e., 2 registers) in hexadecimal floating point as per IEEE754 (a useful online
converter can be found at https://www.h-schmidt.net/FloatConverter/[EEE754.html).

A total of up to 32 values are then stored in TBS09S after the execution of a SDI-12 command. When a value is
not available (for instance only 5 measurements are expected), then the first 10 registers are populated whereas
other 54 registers left are set to zero.

Example:
SDI-12 measurement value index 1
0x23 0x41BE
0x24 0xF5C3

The value represented as hexadecimal float is 0x41BEF5C3 which is 23.87 in decimal.

17

https://www.h-schmidt.net/FloatConverter/IEEE754.html

The following flowchart highlights the steps to follow to configure TBS09S and execute SDI-12 measurements.

TBS09S: waiting for command

y
Configure required SDI-12
command in Holding Register
0x00 to Ox1F

(Function code 0x06)

ead SDI-12 measurement delay tti
and number of returned parameters
n from Input Register matching with
SDI-12 command Holding Register
[OPTIONAL]

(Function Code 0x04)

o

Enable SDI-12 measurement

command by turning ON the

Coil Register matching with

the SDI-12 command Holding
Register

(Function code 0x05)

A

MODBUS master waits
for ttt seconds

A
Read SDI-12 command status
register (Input Register 0x20)

(Function code 0x04)

W‘ﬁﬁ TEK B>
MODBUS Master to SDI-12 Slave Converter

Status Code = Ox117

Get n returned SDI-12
measurement values by reading
2*n Input Registers starting
from address 0x21

(Function code 0x04)

After the MODBUS master has started the SDI-12 measurement procedure by writing to the desired Coil Register,
TBSO09 is not able to process any other MODBUS command until it has updated the corresponding Input Register
with the measurement values.

Would the MODBUS master send any command or poll the Input Registers during that time, a timeout error will

occur.

Note:

Itis mandatory to add aminimum 1s delay between the execution of 2 MODBUS requests (whatever
the function code is). This is required to cope with internal TBS09S processing time.

It is also recommended to configure the MODBUS master device with at least 2s for the MODBUS

response timeout.

Below diagram highlights both MODBUS timeout and MODBUS requests delay:

18

g

MODBUS Master to SDI-12 Slave Converter

MODBUS Master device - REQUEST 1 TBS09S

TBS09S sends MODBUS response

Wait at least 1s.

MODBUS Master device - REQUEST 2 TBS09S

Master sends MODBUS reques

TBS09S sends MODBUS response

| —

Some extra MODBUS commands are provided by TBS09S to:
e Change TBS09S MODBUS address
e Check TBS09S FW version
¢ Reload default settings

These commands need to be written to any TBS09S holding register but unlike SDI-12 commands, they are

immediately executed and therefore does not require any further commands.
Example
NO Cmd Byte 1 (Command) | Byte 2 (Parameter) | Rule of byte 2
Cmd Byte 1 | Byte 2
Change Change addr: 5 0OxCA 0x05
1 Slave 0xCA 0x00-0xFF slave address | addr: 13 | OxCA | OxOD
Address from 0-255 | addr: 248 | OXCA | OxF8
Get
p | Device OXEF 0x00 OXEFOO | OXEF | Ox00
Firmware
Version
Get
3 Default OxED 0x00 OxEDOO OxED | Ox00
Setting

However, it is strongly recommended to read back the content of the status register (Input Register 0x20) to ensure

the command has been correctly executed.

19

g

MODBUS Master to SDI-12 Slave Converter

This command must be very carefully executed as there’s no way to retrieve TBS09S MODBUS address if it has
been lost, unless by trying all addresses one by one.

It is therefore strongly recommended to read back the content of the status register (Input Register 0x20) to ensure
the command has been correctly executed before proceeding further.

Once the command has been successfully executed, the new MODBUS address is applied after turning off and
on TBSO09S.

After executing this command, the FW version can be retrieved by reading Input Registers 0x21 to 0x2D.
The FW version consists in a hexadecimal ASCII string with following format:

Register address Data
0x21 0x3134
0x22 0x5445
0x23 0x4B42
0x24 Ox4F58
0x25 0x564E
0x26 0x5442
0x27 0x5330
0x28 0x3953
0x29 0x7276
Ox2A 0x4131
0x2B 0x3930
0x2C 0x3031
0x2D 0x3030

Converted to ASCIl; 14TEKBOXVNTBS09SrvA1900100

Where:
e 14:SDI-12 standard v1.4
e TEKBOXVN: Tekbox Vietnam
e TBS09S: product name
e rvA: HW revision A
e 1900100: FW version 19.0.01.00

This command resets TBS09S to its default parameters:
e RS485: 19200 bauds, no parity, 1 stop bit, 8 data bits
¢ MODBUS slave address: 1

20

MODBUS Master to SDI-12 Slave Converter

e All holding registers are cleared

After successful execution of this command (that can be confirmed by checking the status register 0x20), the
default configuration is restored after turning off/lon TBS09S.

The following examples are based on Click PLC Koyo C0-12DD1E-2-D communicating with TBS09S.

The initial setup is as follows:
e PLC: MODBUS RTU
e TBS09S MODBUS slave address: 1
e SDI-12 sensor: TBSSPP1 soil moisture and temperature cell, SDI-12 address: T

Also in below example, Holding Register 0x15 will be used to store the commands to be executed (could be any
other Holding Register as long as it's within the range supported by TBS09S).

After executing any command stored in the Holding Registers, the status register shall be systematically checked
to ensure the success of the operation. This will be described only in the example related to TBS09S MODBUS
address change however it is strongly recommended to perform this check whenever a command is executed.

Change TBS09S MODBUS address from 1 to 5 by writing command OxCAO5 to Holding Register 0x15 using
MODBUS function code 0x06:

Moss mod_add CAOSh
Send (CPU Port:3) MODBUS
Slave ID 1 B C37
Maodbus Function Code 06 —
—Slave Addr 15h|=&mens
mod_add
Master @ Ds6 B C3s
Success
B39
Error
——{M D540
ErrCode

The command has been successfully executed; this can be checked by reading back the status register at Input
Register address 0x20:

21

g

MODBUS Master to SDI-12 Slave Converter

DS60 Status 1115h

e 0x11: Success
e 0x15: Holding Register address where the Change MODBUS Address command has been programmed.

TBS09S is then turned off/on so the new MODBUS slave address is applied.

Note:
It shall be noted that there are 2 different kinds of status, irrespective of the command that is executed:
e MODBUS status

o According to MODBUS standard, a response is sent back by the slave following a MODBUS
request sent by the master. In case of error, a specific MODBUS exception response is sent back.

o In this example, C39 coil is used to signal an error and the exception code is logged into PLC
DS40 register.

e TBSO09S status
o This is the value stored in Input Register address 0x20 as described earlier in this document.

o This status is related to TBS09S processing and more specifically when a command stored in the
Holding Registers is executed.

SDI-12 sensor address is changed from 0 to T by writing 0x3025 to Holding Register 0x15 using MODBUS function
code 0x06:

[Moss sdi_add 3025h
Send (CPU Port:3) MODBLS
Slave ID 5 B C53
Maodbus Function Code 06
——Slave Addr 15h|3ending
edi_add
Master mMDse B C54
12325 N
SUCCESS
B C35
Error
——{ M 0543
ErrCode ~

New SDI-12 address T is immediately applied.

22

g

MODBUS Master to SDI-12 Slave Converter

The PLC will program SDI-12 command TCC2! by writing 0x54B8 to Holding Register 0x15 using MODBUS
function code 0x06.

[1]os1 SDICMD 5483h
Send (CPU Port:3) MODBUS
Slave ID 5 B C20
Medbus Function Code Dﬁf{:}
—Slave Addr 15h|+&neing
SDICMD
Master @ D1 B C31
21688 :
SUCCEss
32
Errar O
—{ M D554
EmCode ~

The PLC must then wait 1s before sending the next MODBUS request.

This step is optional and is only to illustrate that at any time it's possible to read back SDI-12 commands
configuration by reading corresponding Holding Register.

Read back Holding Register 0x15 using MODBUS function code 0x03:

Receive (CPU Port:3) MODBLUS
Slave 1D 3 B C33
Modbus Function Code 03 —
—Slave Addr 15k | Receiing
NO. of Master Addresses 1
Word Swap OFF [C34
Success
B C3s
Error
SCHCHECK |:|I| 0555
Master M os2 ErrCode :|
21688 0

23

g

MODBUS Master to SDI-12 Slave Converter

The SDI-12 command has been correctly programmed:
]_]__|Dsz SDICHECK 54E5h

The PLC must then wait 1s before sending the next MODBUS request.

After programming the desired SDI-12 command, TBS09S gets SDI-12 parameters ttt and n and makes them
available in Input Register 0x15.

These parameters can be read back by using MODBUS function code 0x04.

Receive (CPU Port:3) MODBLS
Slave ID 5 B C6
Modbus Function Code 0 —
—{Slave Addr 15| Receiing

MO, of Master Addresses 1 7
Word Swap OFF '

Success

BcCs
Error
it [0 Dss6
Master M Ds3 ErrCode - ~ :l
313 w

]_]__|D53 ttt 0201h

0x0201 is read back:
e 0x02: delay 2s
e 0x01: number of measurement values 1

The PLC must then wait 1s before sending the next MODBUS request.

24

W‘ﬁﬁ TEK B>
MODBUS Master to SDI-12 Slave Converter

Command TCC2! will now be executed by turning on the Coil Register 0x15 using MODBUS function code 0x05:

Send (CPU Port:3) MODBUS
Slave ID 5 B o
Modbus Function Code 05—
——Slave Addr 15h|+&neing
SDIMEAS
Master B C50 B C10
anl ——
SDCess
ECn
Error
—{ [0 D557]
ErmCode ~

Turning on this coil will trigger the SDI-12 measurement command programmed in Holding Register 0x15 (i.e.
TCC2!) and will automatically send SDI-12 data command TDO! Retrieve the measurement values.

The PLC needs then to wait for 2s (SDI-12 delay is 2s in this example) before reading the measurement value in
Input Registers from address 0x21.

After the 2 seconds delay period has expired, it is required to check TBS09S status register (Input Register 0x20)
to ensure the command has been successfully processed and executed:

DS&0 Status 1115h

Status register holds 0x1115:
e 0x11: command successfully executed
e 0x15: the SDI-12 command stored in Holding Register 0x15 has been executed

The PLC must then wait 1s before sending the next MODBUS request.

25

MODBUS Master to SDI-12 Slave Converter

The temperature value returned by the sensor can be read by simply reading TBS09S Input Registers from

address 0x20 (Status register + measurement values registers) using MODBUS function code 4:

Receive (CPU Port:3) MODBUS
Slave ID 5 EC12
Maodbus Function Code 04
—{Slave Addr 20 |Receiing

MNO. of Master Addresses 10 B 13
Word Swap OFF

Success

Bl C14
Error
Status | |I| D 558
Master M Dsen EmCode _ :l
4373 v

In this example all of the 64-measurement values register are read including the status register.

Since this sensor returns only one measurement value, it is held as a hexadecimal float number in the first 2
measurement registers (addresses 0x21 and 0x22):

020 [I]osso
21 | 1]pss1
22 | T]pssz2
023 [1]osss
024 |T]oss4
025 |T]osss
026 |1]osss
027 |T]oss7

Status 1115h [

Data

410Fh
020Ch [
0000k [
0000h [
0000k
0000k
0000k

The hexadecimal floating-point representation is 0x41DF020C which is +27.876 in decimal.

Below example shows the ADU frames exchanged between a MOBUS RTU master and TBS09S (MODBUS
address 1) to perform measurements with an SDI-12 air temperature sensor.

When executing SDI-12 command M1!, the sensor returns 2 measurement values after 2s: humidity and then

temperature.

Command

MODBUS MASTER -> TBS09S

TBS09S -> MODBUS MASTER

OoM1!

01 06 00 00 30 7E 1D EA
Write 0x307E (command M1!) to holding
register 0x00

01 06 00 00 30 7E 1D EA

Check status

01 04 00200001 3000
Read status register (input register 0x20)

01 04 02 11 00 B5 60

Command stored at input register 0x00 (ie
OM1! In this example) has been
successfully executed

26

huiy

g

MODBUS Master to SDI-12 Slave Converter

Read ttt and n

01040000000131CA

01040202023991
Retrieve ttt=0x02 and the number of
measurements is 0x02

Write Coil

01 05 00 00 FF 00 8C 3A

01 05 00 00 FF 00 8C 3A

Read Humidity

01040021000221C1
Read humidity stored as a float number in
input registers 0x21 and 0x22

0104 04 42 44 1E B8 A6 3B
Humidity is 49.03% (0x42441EB8 in
hexadecimal float representation)

Read Temperature

01 04 00 23 00 02 80 01

Read temperature stored as a float

0104 04 41 EO A7 FO 94 3A
Temperature is 28.08 T (0x41EQ0A7FO in

o TEKBO>

number in input registers 0x23 and 0x24 hexadecimal float representation)

SDI-12 is a standard for interfacing data recorders with microprocessor-based sensors. SDI-12 stands for
serial/digital interface at 1200 baud. It can connect multiple sensors with a single data recorder on one cable. It
supports up to 60 meters cable between a sensor and a data logger.

The SDI-12 standard is prepared by

SDI-12 Support Group
(Technical Committee)
165 East 500 South
River Heights, Utah
435-752-4200
435-752-1691 (FAX)
http://www.sdi-12.0rg

The standard is available on the website of the SDI-12 Support Group.

The MODBUS standard is managed by Modbus Organization and the reference MODBUS Application Protocol is
available on their website: https://www.modbus.org/

Housing Length (mm) Width (mm) Height (mm)
DIN rail 90.2 36.3 41.9
FIBOX 120 80 55

27

http://www.sdi-12.org/
https://www.modbus.org/

huiy

g

MODBUS Master to SDI-12 Slave Converter

Symbol | Parameter Conditions Min Max Unit
Ta Operating Ambient DIN raﬂ: standard room +20 +30 oc
Temperature Range humidity levels.
TSTG Storage Temperature DlN I‘ail housing '20 +80 °C
Range FIBOX housing -40 +140
DIN rail: no, indoor use only
- Waterproofness -
FIBOX: yes, IP67
Part Number Description
TBS09S MODBUS master to SDI-12 slave converter — FIBOX housing
TBS09SDR MODBUS master to SDI-12 slave converter — DIN rail housing
TBS09J 7 ports MODBUS junction box (half/full duplex) — FIBOX housing
Version Date Author Changes
V1.0 9.8.2018 Thinh Creation of the document
V1.1 9.19.2019 Thinh Update new command
V15 24.6.2020 Hoa Hoang Updated naming to MODBUS Master to SDI 12 Slave
Converter
V1.6 15.7.2020 Mayerhofer Complete rework of the document
V1.7 17.7.2020 Philippe Updated link in 5.5
V1.8 2.4.2021 Mayerhofer Updated drawing in chapter 1
V1.9 22.07.2021 Philippe Hervieu Fix typo in 5.4.2 (Read returned SDI-12 address)
V1.10 08.08.2022 Philippe Hervieu 120 Ohm termination set by default.
V2.0 07.09.2023 Philippe Hervieu User manual reworked following FW upgrade.
V2.1 11.04.2025 Philippe Hervieu Fix few typo errors and add an example using ADU.
V2.2 05.06.2025 Philippe Hervieu Change product picture

28

o TEKBO>

